Building Classification Using Airborne Lidar Data with Satellite Sar Data
نویسندگان
چکیده
In general, airborne photogrammetry and LiDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, attribute data acquisition and classification depend on manual editing works including ground surveys. On the other hand, SAR data have a possibility to automate the attribute data acquisition and classification. Thus, we focus on an integration of LiDAR and SAR data to achieve a frequent map update with attribute data acquisition. In this study, we use airborne LiDAR and satellite SAR data to classify buildings. Firstly, we generate a digital surface model (DSM) from point cloud acquired with airborne LiDAR. Secondary, the DSM is registered with a normalized radar cross section (NRCS) image calculated from SAR data. Thirdly, buildings are extracted from the DSM. Finally, the buildings are classified into several clusters in the DSM. We clarified that a combination of airborne LiDAR and satellite SAR data can extract and classify buildings in urban area.
منابع مشابه
Fusion of Airborne LiDAR Data and Satellite SAR Data for Building Classification
In an airborne photogrammetry, a geometrical modeling and object classification can be automated using color images. Stereo matching is an essential technique to reconstruct 3D model from images. Although, object classification methods are automated using height data estimated with the stereo matching, it is difficult to recognize construction materials, such as woods and concrete. The construc...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملFusion of SAR, Optical Imagery and Airborne LiDAR for Surface Water Detection
The detection and monitoring of surface water and its extent are critical for understanding floodwater hazards. Flooding and undermining caused by surface water flow can result in damage to critical infrastructure and changes in ecosystems. Along major transportation corridors, such as railways, even small bodies of water can pose significant hazards resulting in eroded or washed out tracks. In...
متن کاملUsing Optical Satellite Data and Airborne Lidar Data for a Nationwide Sampling Survey
A workflow for combining airborne lidar, optical satellite data and National Forest Inventory (NFI) plots for cost efficient operational mapping of a nationwide sample of 5 × 5 km squares in the National Inventory of Landscapes in Sweden (NILS) landscape inventory in Sweden is presented. Since the areas where both satellite data and lidar data have a common data quality are limited, and impose ...
متن کاملAdvances in forest characterisation, mapping and monitoring through integration of LiDAR and other remote sensing datasets
The diversity of scales and modes in which ground, airborne and spaceborne LiDAR operate has increased opportunities for quantitatively assessing forest structure, biomass and species composition and obtaining more general information on dynamics and ecological/commercial value. However, the level of information extracted can be increased even further by integrating data from other sensor types...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014